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Industrial Applications




Wall-resolving Simulations can be applied to:

B Predict performance of a product for completely replacing tests
B |dentify the essential phenomena that dominate product performance

B Understand the reason why an unexpected phenomenon occurs

B Generate accurate data sets to be referenced for developing prediction model




' Replacing Tests

400 m long, 18 m wide, 8 m deep
water tank W|th a maximum towing speed of 15 m/s
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Flow Solvers

Chisachi KATO, et al., Journal of Applied Mechanics, 2003
Chisachi KATO, et al., Computers & Fluids, 2007 4



B FEM-based incompressible/compressible Flow Solver
B Developed for Industrial Applications of WR-LES
B Features Automated Mesh Refinement and Overset Method
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' FrontFlow/X (FFX) Flow Solver o

Center for AResearch on

B | BM-based compressible Flow Solver
B Developed for Industrial Applications of Direct Sound Simulations
B Features Completely Mesh-free Solver
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| Features and Drawbacks of LBM Solver

B Features
» Best suited for fully-automated mesh generation
» Exact solution for convective motion
» Very low memory and computational costs per grid and time step

B Drawbacks
» Limited to low-Mach-number flow and is not suited for thermodynamic applications
» Near-wall momentum transfer affected by collision models
» Huge time steps required for developing flow field
» Acoustic waves affected by relaxation time coefficient




Ship Hydrodynamics Applications




| Resistance Test for KVLCC2 Vessel P 2
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'WaII-ResoIved LES for Another Vessel (cont’d) CESS

- Center for Research on
Innovative Simulation Software

B A snapshot of computed vortices near hull surface

Courtesy of Shipbuilding Research Centre of Japan



B Refined-mesh computation predicted resistance with less than 1% error
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| Self-propulsion Test for KVLCC2 Vessel
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Applications to Automobile
Aerodynamics and Aeroacoustics




Numerical Wind-tunnel Tests for
Automobile Aeroacoustics

Keiichiro IIDA, et al., SAE 2016 World Congress and Exhibition, 2016 ST



' Latest Results by FFX (LBM code) ETSs

Center for AResearch on
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o FFB
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'Comparison s
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Applications to
Fundamental Research




Numerical Investigations on Suction
Vortices In a Pump Sump

-thelr origin, formation and dynamics-

Yoshinobu YAMADE, et al., Journal of Fluids Engineering, 2020 s



'Suction Vortices in a Pump Sump

B Their origin, formation and dynamics

Courtesy of Prof. Matsui of
Yokohama National University







! Origin of Submerged Vortices
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! Origin of Air-entrained Vortices




Development of vertical O . s . ”
vorticity in time : i f ; :

80 mm above floor

40 mm above floor

1 mm above floor




Q Outlet

Z=300mm

D=32.9mm

Dummy Region

B
Z=100mm

Main Region

ﬁ Inlet Z= 30mm

Simplified high-resolution
omputational model

D=60mm

Variation of vertical velocity
In time and space
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Sound Radiated from a Lifting Surface
subjected to Inflow Turbulence

Noriaki KOBAYASHI, et al., Transactions of the JSME (in Japanese), 2020 am—



Active Turbulence Generator (ATG)

Test NACAOQO012 airfoull

-
O
s
g8
| -
&)
-
&)
O
&)
O
-
@
>
O
| -
>
T
L
=
=
)
O
T
[
-
-
-
T
©
=




Sound Pressure Level measured In

Wind-tunnel

— BGN w/o ATG
— BGN with ATG

Innovative Simulation Software

— Airfoil noise w/o ATG
— Airfoil noise with ATG
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Effects of Turbulence Intensity and Length

U Scale
B Measured sound pressure level (SPL) and velocity fluctuations
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Effects of Turbulence Intensity and Length
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| Airfoil subjected to Circular-cylinder Wake

Vemm
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Sound pressure level [dB]
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Effects of Cylinder and/or Self Turbulence of
| Airfoil
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Consortium Projects to Promote
Industrial Applications
(to be presented In site)




Conclusions and Perspectives




! Concluding Remarks

B Empowered by the latest HPC technologies, we are now able to predict
turbulence in actual industrial flows.

B HPC simulation will also contribute to progress of basic research.

B \We can extend our design capabilities by referencing reliable data sets
generated by highly-accurate simulations.

B Continue to make progress in simulation technology, which is needed to
advance design methods, empowered by Al.
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Intellectualized flow solver
by machine learning




B To drastically reduce computational costs

B To development Innovative algorithm that is not limited by memory size or
memory throughput




HI\/Iachine-Iearned Wall Model for LES
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. Machine Learning of Model Parameters =
_(cont d) . 3

Modelled flow field
Referenced flow field

Modelled flow field
Referenced flow field
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