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Prelude

> Al/ML is not magic

> Important to distinguish hype from real prospect

> There is prospect for AI/ML in HPC

» Optimizing
» Scaling

HPC Al

» Improving
ey . > Automating @ Cm /%\
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Fugaku Supercomputer
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Electric power up to 37 MW
Water cooling system

Computer room 50 m x 60 m = 3,000 m?

Gas-turbine co-generation 5 MW x 2>
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Fugaku Supercomputer

(CPU Memory Units)

Super Computer
Fugaku
Total racks: 432
A rack holds 8 shelfs

A CMU (CPU Memory Unit)

A shelf holds 24 CMUs

Core Memory Group

A CMU holds 2 CPUs
A CMU equips a water
cooling system

AG4FX is developed by Fujitsu
AG64FX adopts Arm ISA
A CPU has 32 GiB memory

AB4FX comprises of 48 computing
cores, 4 OS cores, 4 pcs of 8GiB
HBM2(High Bandwidth Memory), and
the communication interface, etc.

A HBM2 is connected to a core
memory group consisting of 13 cores.
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Fugaku Research nghllghts (FY21)

ML Perf HPC, a new overall performance evaluation of Al
processing.

Fugaku's high overall
performance in a wide range of

[ Achieved world’s first five titles Gordon Bell Special Prize )
(4 consecutive terms + new ML Perf HPC 1st place) Fight against COVID-19
In four HPC performance rankings (Top500, HPCG, HPL- : e _
Al, GraphSOOg, Fugaku won four titles COI"ISGC_LI’[IVG|P/ from ?S%ﬁ%sif”ayngeav(frlggﬁdd?sd22';'&? rﬂggeqluuasr;’rt]léaﬁlrvuegggu\ﬁD
June 2020. In November 2021, also awarded first place in P P

for the first time in the digital transformation of infectious
disease epidemiology. Visualizing arised awareness of
the importance of understanding droplet and aerosol
infection changing behaviour not only in Japan, but also
around the world.

(Prediction of Sudden downpours, COVID-19 infection)
Using big data from weather radar, a real-time of ultra-fast
precipitation forecasting, was conducted in the Tokyo area
using Fugaku during the Tokyo Olympic and Paralympic

Games.

Tields, as well as its ability to :
make a significant contribution ,IOT%-'AJ Specjcal!\ .
to the realization of Society , chievement Awar
\ 5.0[SDGS. V, . .
( - . = ~ r ~
Data Assimilation Research “GENESIS” new version released

Molecular dynamics (MD) simulations

A new version of GENESIS, optimized for 'Fugaku' by co-design,
more than 125 times faster and with many new features,
has been released as free software in 2020. Work on the

dynamic

Data assimilation methods developed in @‘$ : structure of spike proteins on the
numerical weather forecasting were e 3 surface of COVID-19 has analized
applied to the forecasting of COVID-19 .= .-~ g successfully. RIKEN EIHO Award
mfegl'?ns =2 G- i (RIKEN Significant Achievement
£ v et | | Award)
.M."i ........ VD, K \_/ -
...... '.;ﬁ:... ETE L g 66 11




Al on Fugaku

> World 2"d fastest Supercomputer (Top500: June 2022)
> 1ston HPCG and Graph500

> Fujitsu A64FX Arm v8.2-A +
SVE CPUs (32GB HBM memory)

> Creating DL ecosystem for
Fugaku:
https://github.com/di4fugaku
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https://github.com/dl4fugaku

Scaling AI/ML on Fugaku

= Past and on-going effort on scaling ML on Fugaku goes into benchmarks

= MLPerf (https://mlcommons.org/en/)
- Subcategory: MLPerf Training HPC

Area Benchmark Dataset Quality Target Reference Implementation Model
Scientific | Climate segmentation CAM5+TECA simulation IOU 0.82 DeepCAM

Scientific | Cosmology parameter prediction | CosmoFlow N-body simulation | Mean average error 0.124 CosmoFlow

Scientific | Quantum molecular modeling Open Catalyst 2020 (OC20) Forces mean absolute error 0.036 | DimeNet++

g =

I3



https://mlcommons.org/en/

Scaling AI/ML on Fugaku

PERFORMANCE METRICS (TIME TO SOLUTION IN MINUTES) FROM SUBMISSIONS IN CLOSED AND OPEN DIVISIONS

Division  System Submission Software #Processors  #Accelerators  Parallelism’ CosmoFlow DeepCAM
Closed Piz Daint Piz-Daint-128 TensorFlow 2.2.0 128 128 2 s/1 GPU 461.01 -
Piz Daint Piz-Daint-256 TensorFlow 2.2.0 256 256 2 s/1 GPU 327.01 -
ABCI ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 11.71
ABCI ABCI-512 TensorFlow 2.2.0 256 512 1 s/1 GPU 34.42 -
Fugaku Fugaku-512 TensorFlow 2.2.0 + 512 - 1 s/1 CPU 268.77 -
Mesh TensorFlow
Fugaku Fugaku-8192 TensorFlow 2.2.0 + 8,192 - 1s/16 CPUs 101.49 -
Mesh TensorFlow
Cori-GPU Cori-GPU-64 PyTorch 1.6.0 16 64 2 s/1 GPU - 139.29
Cori-GPU Cori-GPU-64 TensorFlow 1.15.0 16 64 1 s/1 GPU 364.73 -
Cori-KNL Cori-KNL-512 TensorFlow 1.15.2 512 - 1 s/1 CPU 536.06 -
HAL HAL-64 TensorFlow 1.15.0 32 64 1 s/1 GPU 265.59 -
Frontera-RTX Frontera-RTX-64  TensorFlow 1.15.2 32 64 1 s/1 GPU 602.23 -
Open ABCI *ABCI-1024 PyTorch 1.6.0 512 1,024 2 s/1 GPU - 10.49
ABCI *ABCI-2048 TensorFlow 2.2.0 1,024 2,048 1 s/1 GPU 13.21 -
Fugaku *Fugaku-16384 TensorFlow 2.2.0 + 16,384 - 1 s/4 CPUs 30.07 -
Mesh TensorFlow
Cori-KNL *xCori-KNL-1024 TensorFlow 1.15.2 1,024 - 1 s/1 CPU 419.69 -

-----

HERLEEE: Parrel et al,

“MEPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems®, WS col-located with SC’'21
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AI-for-Science on Fugaku*

by R-CCS Research Teams & Priority application programs
(collected by Kento Sato)
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[R-CCS]

Nonlinear Dimensionality Reduction for Three-dimensional Flow Field Around Circular Cylinder
with Distributed Parallel Machine Learning on Fugaku (Kazuto Ando et al. [1])

e Mode decomposition is an approach used to decompose flow fields into physically important flow structures

known as modes, POD (Proper Orthogonal Decomposition) is a powerful method

e MD-CNN-AE [1] extended to support 3-D flow

e MD-CNN-AE [2]: A neural network for a mode decomposition method for 2-D flow field around circular

cylinder using a convolutional neural network

e A hybrid parallelism method combining the distribution of network structure (model parallelism) and the training
data (data parallelism) using up to 10,500 nodes on Fugaku was employed for learning.

Schematics of 3D-extended version of MD-CNN-AE
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Priority Application

Development of NN for High-resolution, Real-Time Tsunami Flood Prediction
(Fumihiko Imamura group [1])

e Tsunami simulations to generate training data
e Training Input data: Tsunami waveform in offshore areas

e Training Output data: Flooding conditions in coastal areas

e Training an Al model to predict flooding condition in coastal areas from Tsunami wave format in offshore

- This approach makes it possible to accurately and rapidly obtain detailed flooding forecast before landfall of Tsunami

g Flood Assumed Flood Al prediction
Training in advance Preparation for site installation > © Prediction at the time of disaster depth floodi depth
I @® 250m 00 Ing @ 250m
Training data > Al training Real time prediction 9 1o7m
generation on Fugaku on Fugaku on regular PC
Al model learns the relationship

g between offshore waveforms and &%/ Al model predicts tsunamli flooding with high
f 1 ="

flooding on land resolution on PC In seconds

[o

N .

Train O ':f“: Trained | predict|

¥ Al model > Al model P |
Offshore waveforms t

(real observation) o= [ € AR
e Flooding on land

Tralning data

Fig. 1 Overview of tsunami prediction with Al

Flooding on land

measures, etc.

Fig 2. Comparison between anticipated flooding (tsunami source model created by
Cabinet Office of Japan with tripled wave heights) of Nankai Trough Megathrust
Earthquake and prediction results of newly developed Al

RIKEN R‘CCS
su Levei?&ges World’s Fastest Supercomputer ‘Fugaku’ and Al to Deliver Real-Time Tsunami Prediction in Joint Project

eede. 244 [==]
resgirgle ?ge) International Research Institute of Disaster Science, Tohoku University, Earthquake Research Institute, The University of Tokyo, Fujit 4 Ca ) / J‘i’}\
® : .. ”ELt,d_Fujit ------- 11




Priority Application

Elucidation of the Cause and Diversity of Cancer using Large-scale Data Analysis and Al Tech. [1]

Causality of Gefitinib resistancein cancer cells suggested by the new technology

Gene names and Indications regarding genes in existing medical d i anlane
: Ny - I t g resistance i
5 z Possible findings from existing medical literature ogrgresRiand to drugresistance
expression levels literature —% Drug

Low expression level

Even if a patient receives a targeted cancer drug therapy, the appearance of drug-resistant cancer cells
represents an ongoing threat to full remission

e The mechanism for how certain cancers become drug resistant remains unclear
Fujitsu implemented parallel conditional and causal algorithms

o Utilizing Fujitsu’s “Wide Learning” Al technology to extract combinations of potential genes relating to
the emergence of drug resistance based on statistical information

e Also, maximizing computational performance with the supercomputer Fugaku

Fugaku, Fujitsu and TMDU were able to search the entire human genome for conditions and causality

New findings

within a single day and determine the genes that cause resistance SP7 I suggested 35 a further potential
to drugs used to treat lung cancer bbb o i

published linking SP7 to resistance against
Gefitinib previously)

e

Contributes

resistant

Contributes to the suppression of EGFR expression. A low expression level of ZNF 516 may indicate activation of the EGFR cancer

Suppresses cell proliferation by inhibiting the EGFR

otznE 16 pathway* pathvey argetac by Getitnlb: Previous findings in medical literature
Several studies exist on epithelial-mesenchymal transition (EMT*) regulation of PRRX1.

Low expression level E2F1 and E2F2 stimulate cell proliferation by cycling A low expression of E2F6 may promote cell proliferation (not covered : P ; Y ( ‘ ) reg < R

£ E2F6 th T th E2F6 inhibits this f % by the EGFR path Many studies have suggested that EMT is one of the mechanisms causing Gefitinib

o e cell cycle pathway. inhibits this function. y the pathway). resistance in lung cancer cells.

Low expression level Known to suppress the Wnt pathway (which A low expression level of EMX1 may not suppress the Wnt pathway »

of EMX1 promotes cell cycle pathways). and may promote cell proliferation (not covered by the EGFR pathway). *EMT: phenomenonin which cells of the epithelial system are transformed into cells of the
mesenchymal system that have acquired migration, suspected to be involved in the
metastasis of cancer.

* mechanism that activates cell growth when stimulated by a biomolecule called epidermal growth factor (EGF)

00038382800 3220

X ®
nd Al technology.for scientific discovery to shed light on drug resistance in cancer treatment, March 7, 2022 (https://www.fujitsu.com/global/ awzn - RCCS

s3s. (3311 =
[11(Pres $5!£§§;ea's'e§= Fujitsu Limited, Tokyo Medical and Dental University,” Fujitsu and Tokyo Medical and Dental University leverage world’s fastest sup p @ ||| /%\
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Priority Application

Forecasting the Expansion of Supernova Shells Using Deep Learning toward High-Resolution
Galaxy Simulations (Kaiya Hirashima et al. [1])

e Goal: achieve the highest-resolution galaxy simulation which can resolve individual stars 0025 01 02s0s 17996 5 1632 6112025
on the supercomputer Fugaku. LT T T T simuiation
1000¢ --- Ideal Scaling
e One of the bottlenecks is the calculation including small scall phenomena (e.g., ‘ -
supernovae) 2 ol
e Just using massively parallel computers cannot solve it. g I
T 10—
e And algorithm that uses deep learning to resolve the bottlenecks. g BAD
. . = | \\ \_/
- The deep learning model to forecast the expansion of supernova shells 10 B >
GOOD
H\‘ | \HHH‘ | \HHH‘ Lol | \H\\\\‘
0.
< They applied the framework for video predictions to o New 000 10000
Forecast by Deep Learning forec_as_tlng the re_sults of S|mulatlons Strong Scaling of GADGET-4
@ » Prediction of spatial features: CNN (Based on [5] Figure 63)
fn}‘*’  Prediction of temporal changes: LSTM
o Training data Ground Truth Input

Initial Condltlon
Densitylcm=-3]

.(

* Input: 1 image, Density distribution just before the . Dunsitylam=-31
explosion 5 .

e Qutput: 19 images, Spatiotemporal changes in density 0
after the explosion .15

% Training & Prediction ™
» The training takes several days using an NVIDIA GeForce| = »
RTX 3090 GPU. . .

* The estimation itself takes onIy a few second.

RIKE! .N %!gg /ﬁ\




Other AlI-based Scientific Achievements
(Fugaku is not used)

by R-CCS research team & Priority application programs

-----
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R-CCS

Remote Sensing by Deep Learning From Simulated Data for Flood and Debris-Flow
Mapping for flood disaster damage estimation (Naoto Yokoya et al., 2020 [1])

° Yokoyama et al. proposed a framework that estimates the inundation depth (maximum water level) and

debris-flow-induced topographic deformation
. From remote sensing imagery by integrating deep learning and numerical simulation. [ ] ,
e A water and debris-flow simulator generates training data for various artificial disaster /] St B A E : g
scenarios. N b Y
. . . . . W Va 7
° They showed that regression models based on Attention U-Net and LinkNet architectures trained on such - S / Wl LW A
synthetic data can predict the maximum water level and topographic deformation from a remote sensing- — :
derived change detection map and a digital elevation model : ).\, ’ , ‘
° The proposed framework has an inpainting capability, thus mitigating the false negatives that are inevitable in ‘ \ 5 : it o I
remote sensing image analysis qualitatively /] DR )
r N NN C3 7] L ‘~.>'\“ e o -
o AL e R TS L
K\/ ™ ’g“ “ /‘”“’»{2 / N
Inductive Approach Image g . o
Machine Learning x A Inference .= o Analysis \
Remote Sensing L «-H £ y «-H b
v'\\//;at]::'T:VIZI EZ?;?;ZEZ: : Change & Sloﬁé Remote sensin imaery
) | Regression | ’
DEM Land use \
% - 5| 4
"‘ : . Ui| Training
<) RN Deductive Approach
1t . h .
barametars I it ||“ ‘ W Numerical Simulation
Simulation | | 7S h Binarization N 3
m w4 Maximum water level & | o, 2y [™¥Change
L Topographic deformation & Slope ) : ;. i
i3aidsst Input & Parameters for Disaster Details Binary Change Information Observation SR e Z'if:n).“:fd(ﬁffifﬁfyih’i;" i’“éi?é‘g.fiﬂ‘l;diﬁi“ﬁ ouds amd
_____ ”° Simulation (Remote Sensing Imagery) o data i shown in ray:
ioto &Yaman01 Kagzuki & He, Wei & Baier, Gerald & Adriano, Bruno & Miura, Hiroyuki & Oishi, Satoru. (2020). Breaking Limits of Remote Sensing by s %EEg / Jj}\
m Snnulated Data: Flood and Debris-Flow Mapping. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-15. 10.1109/TGRS.2020.3035469.



R-CCS

Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks
(Rupak Roy et al., 2021 [1])

e Roy et al. proposed new Al-drive data compressor (TEZIP) for time evolutionary data

e We train PredNet to learn how pixels move and how fast by inputting a number of time evolutional frames

e When compressing frames, we predict future frames from original base data, compute delta values and apply

series of encoding

- We only store (1) base frame data and (2) compressed data

e They achieved higher compression ration compared to existing video encoder (Zstd, HFYU, FFV1, x.265 )

Original frames (or decompressed image frames)

B,

Time evolutionary data
(Training data)

Time
evolutionary
image frames

=) :Model training
=2 : Compression workflow

=== : Decompression workflow

D,
96"
C

..........
.........

T +
{ Predicted frames :
P

P,
l $ Delta frames v $

ompresse
frames

n

Compression Ratio

96

C,

16

=)}

N

2

0

& £

OBaseline 0OZSTD ®©HFYU 8FFV1 @mX265 OTEZIP
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Priority Application

Automatic Quantum Circuit Encoding of a given Arbitrary Quantum State
(Tomonori Shirakawa et al. [1])

e Quantum computer can in principle treat an exponentially large amount of data, however, a major challenge in
practice to represent classical data such as a classical image into a quantum circuit

e Inspired by a tensor network method, they have proposed a quantum-classical hybrid algorithm to construct an
optimal quantum circuit for classical data that is represented as a quantum state by the amplitude encoding

e The proposed algorithm employs as an objective function the absolute value of fidelity F = (0|Ct|®), which is
maximized iteratively to construct an optimal quantum circuit ¢ with controlled accuracy.

They proposed a method to construct a quantum circuit |aRRlication of this method
(composed of up to two-qubit gates) representing a given y 2 10_2 " 256 x 256 (16 qubits) =
quantum state approximately with controlled accuracy. Amplitude Encoding of classical data L= ' 64 x 64 (12 qubits)
~ @
) z={z1,22, ,an} = [U) =Y Z,ln) H:%o 10-318
8 n © L . - O
‘0>7 T % (b) original 256 — (c) 32 unitary operators (c{)112unitaryoqerators (e?520unixaryopgrators _:?_ /_/;
‘0>6 T @ % % * AQCE ? | ‘ <% % 10—4
[T ~ Jo)s I é_%; %, TH > o =T
Arbitrary 10)4 $ ]‘ @ I ; | ‘_|‘ =
quantum |0)3 l $ % 64 * . i ) 450 uni | 107° .
State ‘8>2 é l " () vw e p (@) unltaryop‘erators (h) unltaryopjgrators 0] unitary operators — 0 200 400 600 800
‘ >1 R y *  ,,,‘ 1 ) ] M
C’O> \ ' ‘ q. ; Fig 2: Fidelity per site between the quantum state qubits
- : : : ' . representing the original picture in Fig. 1(b) [the msth s
Fig 1: Quantum circuit encoding of a gray scale. (a) Labeling of two-dimensional classical data (vv'|th 8 X 8 pixels, egment of the original picture in Fig.1(f)] and the quantu
as an example). (b) Original picture with 256 < 256 pixels. (c)-(e) Pictures reconstructed by decoding the quantum m circuit state indicated by red triangles (green crosses)

i cm /8
;! o Shirakawa, Hiroshi Ueda, Seiji Yunoki, “Automatic Quantum Circuit Encoding of a given Arbitrary Quantum State e RCCS / %\1 7



I Priority Application

Other Al researches by Priority Application Projects
(Fugaku is not used)

e Comprehensive gene network analysis by XAI for uncovering molecular mechanism of disease (Heewon Park et
al., 2020 [1])

e Although various approaches were developed to gene network analysis, comprehensive interpretation of the massive
networks remains a challenge

e They conducted comprehensive analysis of the massive gene networks with the use of explainable artificial intelligence
(XAI) approaches

- DeepTensor and Tensor Reconstruction-based Interpretable Prediction (TRIP), proposed by Maruhashi et al. 2018; 2020

e The use of the XAI enables us to overcome limitation of existing gene network analysis, i.e., narrow angle in the large-
scale gene network analysis, and this leads to a better understanding of molecular interplay involved to disease

e Machine learning by neural network for quantum many-body solver and experimental data analysis (Yusuke
Nomura et al., 2021 [2])

e Quantum many-body problems are known to show NP hard difficulty

e We have developed a solver by using Boltzmann machines to approximate solutions accurately and efficiently

e It was applied to a challenging problem of a quantum spin model and established the existence of quantum spin liquid
phase, which bears a long-ranged quantum entanglement. On another application of machine learning, we have
extracted electron self-energy, which is hidden in the photoemission experimental data. It has established the existence
of prominent resonance peaks which are responsible for the high-temperature superconductivity.

- [7] Pmd& ‘lﬁggw-@n Maruhashi, Koji, Yamaguchi, Rui, Imoto, Seiya, Miyano, Satoru, “Global gene network exploration based on explainable artifi
i‘¢ial inte

g l%??ﬁnﬂi

génceapproach”, Nov., 2020 om / ,\
H Yusuke and Imada Masatoshl “Dirac-Type Nodal Spln L1qu1d Revealed by Reflned Quantum Many Body Solver Usmg Neural-Net ain RCCS =



Priority Application

Other Al researches by Priority Application Projects
(Fugaku is not used)

e Facilitating ab inijti (c)grdfiﬂull)‘ational sampling of multicomponent solids using an on-lattice neural network model and active learning

(o]
(KasamatsSu et al., 2

° Kasamatsu et al. proposed a scheme for ab initio configurational sampling in multicomponent crystalline solids using Behler-Parinello type
neural network potentials (NNPs)

° The NNPs are trained to predict the energies of relaxed structures from the perfect lattice with configurational disorder instead of the usual
way of training to predict energies as functions of continuous atom coordinates.

. Training set bias is avoided through an active learning scheme

. This enables bypassing of the structural relaxation procedure which is necessary when applying conventional NNP approaches to the lattice
configuration problem

° This idea is demonstrated on the calculation of the temperature dependence of the degree of A/B site inversion in MgAI204, which is a
multivalent system requiring careful handling of long-range interactions

e The present scheme may serve as an alternative to cluster expansion for ‘difficult’ systems, e.g., complex bulk or interface systems with
many components and sublattices that are relevant to many technological applications today

e Density functional theory from supervised learning (Ryo Nagai et al. 2021 [2])
o Density functional theory (DFT) is the standard electronic structure theory and is widely used as a basis for materials design

o DFT is based on the Hohenberg-Kohn theorem that there is a one-to-one correspondence between particle density and energy, a
relationship that should be machine learnable, but the lack of this relationship makes the accuracy limited

e They recently proposed a method to establish this relationship using neural network methods

e They found that the DFT developed in this study can improve the accuracy not only for molecular systems, for which the training set can be
obtained by a very accurate quantum chemical method, but also for solids, for which the training set is unavailable but theoretically derived

physical conditions work alternatively

e  This paves a systematic way for further accuracy and will serve as a tool for developing the ultimate material database
(1] Kaﬁé ":ff:,;;Shusuke and Motoyama, Yuichi and Yoshimi, Kazuyoshi and Matsumoto, Ushio and Kuwabara, Akihide and Ogawa, Takafumi, “Facil
iritating ¥t abiinitio} configurational sampling of multicomponent solids using an on-lattice neural network model and active learning, 10.48550/ARXI p om /%\
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Highlight of Efforts Iin Bridging AI <-> HPC
in R-CCS (Fugaku)

by R-CCS High Performance Artificial Intelligence Systems Research Team

-----
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R-CCS HPAIS Team

> Pl: Mohamed Wahib

> Senior Research Scientists: Jun Igarashi

> Research Scientists: Aleksandr Drozd, Emil Vatai

> Visiting Scientists: Rio Yokota (TokyoTech), Balazs Gerofi (Intel)
> Interns: Soyturk (Koc U., Turkey), Zhang (Hokkaido U), Pucceti (SNS)

x-

Jun Aleksandr Emil Rio Balasz Muhammet Giovanni
Igarashi Drozd Vatai Yokota Gerofi Soyturk Pucceti
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HPC > Al

Bottlenecks in Scaling Al

Unlike traditional HPC applications, Al workloads have multiple bottlenecks
Memory capacity

High
|/O Applications, Models, Paradigms
o Sci. Data’21 CiSE’21 ICS’21 SC’20 IPDPS’20 SC’19(2) SC’14
(Nature) (IEEE) (ACM) (ACM/IEEE) (IEEE) (ACM/IEEE)  (ACM/IEEE)
- Algorithms
Throughput _________ 2 HPDC'21 SoftwareX'21 SC’'19 (1) Evostar'l7 SC’'16 HPDC'15
g = (ACM) (Elsevier) (ACM/IEEE) (Species) (ACM/IEEE) (ACM)
a Frameworks, Runtimes, Middleware
Latency -------------- Il PARCO’21 SC’20 TPDS’22 IPDPS'19 CEC’'11(2) EC’13 CEC’11 (1) %
2 (Elsevier)  (ACM/IEEE) (IEEE) (IEEE) (IEEE) (Springer) (IEEE)
(O]
>
o Networking and 1/0
Network ----——_.___ =
————— - IPCCC’19  CCPE’20  IPDPS’22
(IEEE) (Wiley) (IEEE)
Compute _______ Hardware
~~~~~ - IPDPS’21  IPCCC’19
(IEEE) (IEEE)
Low . . . . o 5
T : Overview of previous research: perspective of L /%\
;R T Al+HPC computing stack 22




HPC > Al

ParDNN: An Oracle for Characterizing and Guiding
Large-Scale Training of Deep Neural Networks

A
D=1xB Xy h
samples
Xu K o
X[N.C, XXyl W[CF,KxK] y[NF, YyXYg]

=
er 2 (RELU)

Lay

(a) Sequential implementation on a single PE

]
Layer 1 NEENEEE

> Different forms of model parallelism are emerging s e THTEE )|
>We provide a model-driven analysis and a utility to
help in detecting the limitations and bottlenecks of — eeebpee b
different parallelism approaches at scale

(c) Spatial parallelism splits the input x and output y on either width (as
shown in this figure), height or both dimensions

) Pure: without data partition p composite layers (p PEs)
User’s constraints (fixed / maximum number of PEs) Parallelism e [ T T 1‘ e ‘%
. I I e o o e
Dataset Specification SERlCERS “ e SRS % NS
S =1 x o Layer parallelism (partition the model vertically with pipeline implemen-
(Sample size, number of samples) D=1 ; B Computation tations)
- - samples Time e i el < ol [ ) Fr
DNN model Specification E, : l;
Network Shape, X[N,C, X\\'XX}{] . o A IAl]rcdncc(dL/d()‘ E&Ilgn(hcr W
: : Communicati ’ o
. Layer dimensions, e.g., x, y, w. w[C,F, KxK] : i £
Overview of ; : on Time o L U LEFH
Complexity, e.g. FLOP counts YINLF, YyXYg] A T
R » (e) Filter parallelism (partition the model horizontally)
ParDNN Computer System Specification Max memory - o
. ) I [
Architecture breakdown per PE : g I ii u uﬂ
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GTOPX Space Mission Benchmarks

»Landscape Analysis for ML

»Important to understand importance of
parameters

»Space mission benchmarks
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Scaling Distributed Deep Learning Workloads beyond
the Memory Capacity with KARMA

Performance on V100. For all figures, only the first
reported mini-batch size (x-axis) fits in memory

ResNet-50 VGG16 ResNet-200
4 . -

»Concurrency-driven out-of-Core "W |y
»Capacity-based interleaved with recompute N | 1! .
>1.52x over state-of-the-art (single GPU) o | | 1 i { 1 d | |
> First out-of-core to support muliti-GPU [ i
>Heterogeneity and careful orchestration I | I ‘1
>Outperforming DP+MD with out-of-core | 8 |
>Experiments with up to 2,048 GPUs | 1 H‘
I e o B g
w . -
o , Zhang, Ryouse Takano, Satoshi Matsuoks, Scaing Distnbuted Desp Lbaring Workloads beyond the Memary Y o /%\
;zgg,_u-f; ., . . Capacity with KARMA, ACM/IEEE Proceedings of Supercomputing 2020 (ACM/IEEE SC'20) RIKEN f o5
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Optimizing Network Architecture for Deep Learning

Problem: Number of involved GPUs (P)
becomes too big, 1000s GPUs.

L3-SW#1 (648 ports) L3-SW#9

Ring-based path

< Halving-Doubling path

L2-SW #1

» Ring-based algorithm O(P)a : latency factor (648 ports) L2-SW #9 L2-5W #10 L2-sw#18 el LW
. ’,fq P~~~ ”aﬂ
increase. - e
- . . ¢/’ ! I;"’ Sl
» Halving-Doubleling algorithms O(logP)a : [Lswil L1-sw [Lsw Lisw
(36ports) #162 #163 #324

network congestion of communication. I T 1T 71 [T 11

(b) Non-blocking Two-level Fat-tree

(a) Non-blocking Three-level Fat-tree (up to 5832 NICs) (up to 3888 NICs)

Proposal: Distributed Loop Network topology

"""""" Length-1 shortcut  —— Length-2 shortcut ~ —— Length-4 shortcut

Pipelined Halving — Doubling Algorithm
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2P downlinks nter-switches

Bandwidth factor
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... Internet Computing 2021
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Al 2 HPC

Al for Scientific Codes

Use Al for code auto generation to aid scientific programmers
in producing HPC programs.

Compiler Technologies High-level Code-Transformation

/ Code auto-generation )
/ High-level context

x High-level context lost This Proposal

x Not scalable
X Constrained time budget A

/// X Problem-specific ['> compiler tech. !
/ > High-level trans. == Machine Learning
/ » Auto-tuning

/ Scalable exploration; general

v

/ High-level context
/ Code auto-generation
/ Elastic time budget

/ General and expandable approach
Auto-tuning

/ Scalable exploration; general x No code auto-generation
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Fugaku is driving innovation in bridging HPC <-> Al, and will
continue to do!

Thank you.

We are hiring!

.......

-
Ram /BN




