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Ø AI/ML is not magic
Ø Important to distinguish hype from real prospect

Ø There is prospect for AI/ML in HPC

Prelude

HPC AI

Ø Optimizing
Ø Scaling

Ø Improving
Ø Automating
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Fugaku Supercomputer
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Fugaku Supercomputer
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Fugaku Research Highlights (FY21)

5

Achieved world's first five titles 
(4 consecutive terms + new ML Perf HPC 1st place)

In four HPC performance rankings (Top500, HPCG, HPL-
AI, Graph500), Fugaku won four titles consecutively from
June 2020. In November 2021, also awarded first place in
ML Perf HPC, a new overall performance evaluation of AI
processing.

Data Assimilation Research
(Prediction of Sudden downpours, COVID-19 infection)

“GENESIS” new version released
Molecular dynamics (MD) simulations

A new version of GENESIS, optimized for 'Fugaku' by co-design, 
more than 125 times faster and with many new features, 
has been released as free software in 2020. Work on the 
dynamic 

Successfully developed a detailed and quantitative COVID-
19 droplet and aerosol dispersion model using "Fugaku" 
for the first time in the digital transformation of infectious 
disease epidemiology. Visualizing arised awareness of 
the importance of understanding droplet and aerosol 
infection changing behaviour not only in Japan, but also 
around the world.
ITU-AJ Special 
Achievement Award

Gordon Bell Special Prize 
Fight against COVID-19 

Using big data from weather radar, a real-time of ultra-fast 
precipitation forecasting, was conducted in the Tokyo area 
using Fugaku during the Tokyo Olympic and Paralympic 
Games.

Data assimilation methods developed in 
numerical weather forecasting were 
applied to the forecasting of COVID-19 
infections

structure of spike proteins on the 
surface of COVID-19 has analized
successfully. RIKEN EIHO Award 
(RIKEN Significant Achievement 
Award)

Fugaku's high overall 
performance in a wide range of 
fields, as well as its ability to 
make a significant contribution 
to the realization of Society 
5.0/SDGs.



Ø World 2nd fastest Supercomputer (Top500: June 2022)
Ø 1st on HPCG and Graph500

Ø Fujitsu A64FX Arm v8.2-A +
SVE CPUs (32GB HBM memory)

Ø Creating DL ecosystem for
Fugaku:
https://github.com/dl4fugaku

AI on Fugaku
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https://github.com/dl4fugaku


Scaling AI/ML on Fugaku

§ Past and on-going effort on scaling ML on Fugaku goes into benchmarks
§ MLPerf (https://mlcommons.org/en/)

§ Subcategory: MLPerf Training HPC
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https://mlcommons.org/en/


Scaling AI/ML on Fugaku

Farrell et al, “MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems“, WS col-located with SC’21 8
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AI-for-Science on Fugaku*

by R-CCS Research Teams & Priority application programs
(collected by Kento Sato)

* To Appear:  Book Chapter “The First Exascale Supercomputer Accelerating AI-for- Science and Beyond ” 
Satoshi Matsuoka, Mohamed Wahib, Aleksandr Drozd, Kento Sato
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l Mode decomposition is an approach used to decompose flow fields into physically important flow structures 
known as modes, POD (Proper Orthogonal Decomposition) is a powerful method

l MD-CNN-AE [1] extended to support 3-D flow 

l MD-CNN-AE [2]: A neural network for a mode decomposition method for 2-D flow field around circular 
cylinder using a convolutional neural network

l A hybrid parallelism method combining the distribution of network structure (model parallelism) and the training 
data (data parallelism) using up to 10,500 nodes on Fugaku was employed for learning.

Nonlinear Dimensionality Reduction for Three-dimensional Flow Field Around Circular Cylinder 
with Distributed Parallel Machine Learning on Fugaku (Kazuto Ando et al. [1])

[1] Ando, K., Onishi, K., Bale, R., Tsubokura, M., Kuroda, A., Minami, K. (2021). Nonlinear Mode Decomposition and Reduced-Order Modeling for Three-Dimensional Cylinder Flow by D
istributed Learning on Fugaku. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds) High Performance Computing. ISC High Performance 2021. Lecture Notes in Computer Science(), 
vol 12761. Springer, Cham. https://doi.org/10.1007/978-3-030-90539-2_8
[2] T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with convolutional neural networks for fluid dynamics,” J. Fluid Mech., vol. 882, A13., 2020, doi:10.1017/jfm.
2019.822.
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l Tsunami simulations to generate training data

l Training Input data: Tsunami waveform in offshore areas

l Training Output data: Flooding conditions in coastal areas

l Training an AI model to predict flooding condition in coastal areas from Tsunami wave format in offshore

à This approach makes it possible to accurately and rapidly obtain detailed flooding forecast before landfall of Tsunami

Development of NN for High-resolution, Real-Time Tsunami Flood Prediction 
(Fumihiko Imamura group [1])

[1] (Press release) International Research Institute of Disaster Science, Tohoku University, Earthquake Research Institute, The University of Tokyo, Fujit
su Laboratories Ltd.Fujitsu Leverages World’s Fastest Supercomputer ‘Fugaku’ and AI to Deliver Real-Time Tsunami Prediction in Joint Project

Fig 2. Comparison between anticipated flooding (tsunami source model created by 
Cabinet Office of Japan with tripled wave heights) of Nankai Trough Megathrust 

Earthquake and prediction results of newly developed AI
Fig. 1 Overview of tsunami prediction with AI

Priority Application
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l Even if a patient receives a targeted cancer drug therapy, the appearance of drug-resistant cancer cells 
represents an ongoing threat to full remission

l The mechanism for how certain cancers become drug resistant remains unclear

l Fujitsu implemented parallel conditional and causal algorithms

l Utilizing Fujitsuʼs “Wide Learning” AI technology to extract combinations of potential genes relating to 
the emergence of drug resistance based on statistical information

l Also, maximizing computational performance with the supercomputer Fugaku

l Fugaku, Fujitsu and TMDU were able to search the entire human genome for conditions and causality 
within a single day and determine the genes that cause resistance
to drugs used to treat lung cancer

Elucidation of the Cause and Diversity of Cancer using Large-scale Data Analysis and AI Tech. [1]

[1] (Press release) Fujitsu Limited, Tokyo Medical and Dental University,” Fujitsu and Tokyo Medical and Dental University leverage world’s fastest sup
ercomputer and AI technology for scientific discovery to shed light on drug resistance in cancer treatment, March 7, 2022 (https://www.fujitsu.com/global/
about/resources/news/press-releases/2022/0307-01.html) 

Priority Application
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l Goal: achieve the highest-resolution galaxy simulation which can resolve individual stars 
on the supercomputer Fugaku.

l One of the bottlenecks is the calculation including small scall phenomena (e.g., 
supernovae)

l Just using massively parallel computers cannot solve it.

l And algorithm that uses deep learning to resolve the bottlenecks.

à The deep learning model to forecast the expansion of supernova shells

Forecasting the Expansion of Supernova Shells Using Deep Learning toward High-Resolution 
Galaxy Simulations (Kaiya Hirashima et al. [1])

[1] K. Hirashima and K. Moriwaki and M. S. Fujii and Y. Hirai and T. Saitoh and J. Makin, “Predicting the Expansion of Supernova Shells for Hig
h-Resolution Galaxy Simulations Using Deep Learning”, Journal of Physics: Conference Series, March, 2022
[2] Springel et al. (2021) 

Strong Scaling of GADGET-4
(Based on [5] Figure 63)

GOOD

BAD

v They applied the framework for video predictions to 
forecasting the results of simulations
• Prediction of  spatial features: CNN
• Prediction of temporal changes: LSTM

v Training data
• Input: 1 image, Density distribution just before the 

explosion
• Output: 19 images,  Spatiotemporal changes in density 

after the explosion
v Training & Prediction
• The training takes several days using an NVIDIA GeForce 

RTX 3090 GPU.
• The estimation itself takes only a few second.

Priority Application



Other AI-based Scientific Achievements
(Fugaku is not used)

by R-CCS research team & Priority application programs
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l Yokoyama et al. proposed a framework that estimates the inundation depth (maximum water level) and 
debris-flow-induced topographic deformation

l From remote sensing imagery by integrating deep learning and numerical simulation. 
l A water and debris-flow simulator generates training data for various artificial disaster scenarios.

l They showed that regression models based on Attention U-Net and LinkNet architectures trained on such 
synthetic data can predict the maximum water level and topographic deformation from a remote sensing-
derived change detection map and a digital elevation model

l The proposed framework has an inpainting capability, thus mitigating the false negatives that are inevitable in 
remote sensing image analysis qualitatively

Remote Sensing by Deep Learning From Simulated Data for Flood and Debris-Flow 
Mapping for flood disaster damage estimation (Naoto Yokoya et al., 2020 [1])

R-CCS

[1] Yokoya, Naoto & Yamanoi, Kazuki & He, Wei & Baier, Gerald & Adriano, Bruno & Miura, Hiroyuki & Oishi, Satoru. (2020). Breaking Limits of Remote Sensing by 
Deep Learning From Simulated Data for Flood and Debris-Flow Mapping. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-15. 10.1109/TGRS.2020.3035469.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YOKOYA et al.: BREAKING LIMITS OF REMOTE SENSING BY DEEP LEARNING FROM SIMULATED DATA 3

Fig. 2. Overview concept of the proposed framework.

trace, which can be obtained in postdisaster terms. Therefore,
the usability of these simulations is not high enough for
prediction purposes.

In contrast, methods that estimate both the transportation
and development of debris flow [39]–[41] can be applied only
from the initial location of the slope failures. By connecting
with a statistical landslide prediction, predictive simulation
that requires no debris-flow traces has also been proposed [42].
In this work, we employed this predictive method to generate
several scenarios of rainfall-triggered flood and debris-flow
damages.

C. Synergy of Deep Learning and Simulation
The collection of training data is a challenge for deep

learning in all fields, including remote sensing [43]–[45].
Enormous efforts have been made to create synthetic data
for training through simulation in various fields, includ-
ing computer vision, bioinformatics [46], natural language
processing [47], [48], and remote sensing [49]. In computer
vision, for example, simulation-generated synthetic data are
widely used as training data for basic tasks, such as depth
estimation [50], optical flow [51], semantic segmentation [52],
[53], and object detection [54]. Full-scale simulation environ-
ments have been used to create indoor and outdoor scenes
for autonomous driving [55], [56], robotics [57], [58], and
aerial navigation [59], [60]. Research on domain adaptation is
also underway to more efficiently utilize models learned from
synthetic data for the analysis of real data [52], [54].

Collecting training data for very rare events such as disasters
is challenging. In particular, it is difficult to collect dense,
detailed disaster information from real measurements, such as
the inundation depth and topographic deformation. Inspired by
the abovementioned research, this work proposes to generate
training data for flood and debris flow by numerical simulation.

In the event of a disaster, a deep model can then rapidly
estimate the detailed damage information, using a change
detection map obtained by conventional remote sensing image
analysis as input.

III. METHODOLOGY

To break the limits of current remote sensing approaches,
we combine two technologies: numerical simulation and deep
learning. The former can generate a sufficient amount of
synthetic data for training, and the latter is capable of solv-
ing complex inverse problems from a significant amount
of training data. The proposed methodology comprises four
modules: 1) image analysis to detect changes from bitemporal
remote sensing data; 2) simulation of flood and debris flow
to synthesize training data of target variables (i.e., maximum
water level and topographic deformation); 3) binarization of
change information to link numerical simulation and remote
sensing (or synthetic and real data); and 4) regression of target
variables from a binary change map and DEM based on CNNs.
Fig. 2 shows an overview of our methodology’s concept.

The second and third modules deductively create output and
input of training samples, respectively, for various artificial
scenarios of floods and debris flows. The fourth module learns
a nonlinear mapping inductively to solve the inverse problem
from binary change information together with DEM to the
maximum water level and topographic deformation. In a real
scenario, the outcome of the first module is used as the input in
the inference phase of the fourth module. Sections III-A–III-D
detail the four modules.

A. Image Analysis
There are various approaches for flood and landslide

(including debris flow) detection that use either optical or SAR
data, as previously reviewed in Section II. In this work,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 8. (a), (c), and (e) Maximum water level and (b), (d), and (f) topographic deformation of (a) and (b) reference simulation, (c) and (d) average simulation,
and (e) and (f) our method with (g) reference map of (blue) flood and (brown) debris-flow extent and (h) binary change detection map. Mask for clouds and
no data is shown in gray.

successfully improved the detection of disaster extent areas.
The fact that our IoU scores are comparable to or even
better than those of the reference simulation suggests that

high accuracy has been achieved for flood and debris-
flow detection. The RMSE and LSHI of our results are
better than those of the average simulation with large
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l Roy et al. proposed new AI-drive data compressor (TEZIP) for time evolutionary data

l We train PredNet to learn how pixels move and how fast by inputting a number of time evolutional frames

l When compressing frames, we predict future frames from original base data, compute delta values and apply 
series of encoding

à We only store (1) base frame data and (2) compressed data

l They achieved higher compression ration compared to existing video encoder (Zstd, HFYU, FFV1, x.265 ) 

Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks 
(Rupak Roy et al., 2021 [1])

R-CCS

in a second) and compression ratio (the ratio of the data
size before and after compression). Otherwise, complicated
(de)compression can achieve higher compression ratio with
lower speed while simple (de)compression may achieve lower
compression ratio with higher speed. Time evolutionary data
offer additional opportunities to apply predictive DNN tech-
niques. However, DNN techniques can take more time than
simple algorithms such as curve fitting models. Thus, applying
DNN for effective compression (good trade-off between com-
pression ratio and (de) compression time) of time evolutionary
data remains an interesting research challenge.

In this paper, we develop an efficient (de)compression
framework called TEZIP (Time Evolutionary ZIP) that can
support dynamic lossy and lossless compression of time evolu-
tionary image frames with high compression ratio and speed.
TEZIP employs PredNet to exploit the temporal locality of
time evolutionary data, predict the next image frames and
derive the resulting differences between the predicted frame
and the actual frame as a delta frame that is much more com-
pressible. Next, we apply three encoding techniques to exploit
the spatial similarities in the delta frames, point-wise relative
error-bounded quantization, density-based spatial encoding
and entropy encoding. Finally, we apply lossless compressors
to compress these encoded frames. To pinpoint the best trade-
off between (de)compression ratio and speed, we also propose
window-based prediction algorithms. Specifically, this paper
makes the following contributions:

• A new application of neural network technologies for data
compression through an extension to the PredNet model
that exploits the temporal locality of time evolutionary
image data and supports both integer and floating-point
value prediction of real-world datasets;

• Novel encoding techniques exploiting spatial similarities,
point-wise relative error-bounded quantization, density-
based spatial encoding and entropy encoding;

• Flexible window-based prediction algorithms to find the
best trade-off between compression ratio and compression
speed while maintaining the image quality.

• An empirical evaluation showing effectiveness of TEZIP
with real-world time evolutionary data by comparing with
popular lossy and lossless compressors.

Especially, our evaluation on real-world time evolutionary
data generated from SPring-8 [21] shows that, in terms of
compression ratio, TEZIP outperforms existing lossless com-
pressors such as x265 by up to 3.2x and lossy compressors
such as SZ by up to 3.3x. To the best of our knowledge,
TEZIP is the first compressor that can accurately predict time
evolutionary data for effective data reduction and pinpoint a
good trade-off for balanced compression ratio and speed.

II. BACKGROUND

Time Evolutionary Data: Synchrotron radiation facilities
are used to elucidate microscopic structures of a varieties of
materials from physical, chemical, to biological and medical
domains. With bright X-rays in the synchrotron radiation fa-
cilities , scientists can observe the evolution of the structure in

time. Such capabilities shed light on the origin of various phe-
nomena such as the biological function of proteins, the causes
of battery deterioration, etc. Along with the improvement on
X-ray sources, X-ray imaging detector technologies are rapidly
developing. For example, a large synchrotron radiation facility
(SPring-8) with about 60 beamlines is planning to upgrade
these beamlines with the next generation detector (CITIUS).
In 2025, it is projected, that a single beamline will generate
1.3 Exabytes of data per year in raw format [21].
Predictive Coding Network (PredNet): To achieve fast
transfer of compressed data in synchrotron radiation and
similar facilities, effective prediction is important. For accurate
prediction, we use a deep convolutional recurrent neural net-
work which can exploit a key feature of time evolutionary
data which is the similarity between consecutive images.
The changes observed between consecutive time evolutionary
images are mostly rule-based changes, e.g., certain rules from
physical systems. PredNet (Predictive coding NETwork) is
such a deep convolutional recurrent neural network. PredNet
is a self-supervised neural network model designed to learn
predictive coding of video frames. PredNet can learn represen-
tations that are relatively tolerant to object transformations.
It can also efficiently decode latent object parameters (e.g.
pose) and identify objects with few training frames which
makes it a suitable candidate for our purpose. Given one
RGB image frame from time evolutionary dataset, the model
trained by PredNet can predict the next RGB image frame
for the inference phase. PredNet accepts both floating-point
and integer values for RGB values and predicts the next RGB
image in floating-point. For the training phase, PredNet is
designed to receive RGB values as the training data, and then
produce a trained model that can learn the hidden trends of the
pixel movement and predict future frames from base frames.
We leverage this prediction engine of PredNet for effective
compression of time evolutionary data.

III. TEZIP: (DE)COMPRESSION OF TIME EVOLUTIONARY
IMAGE FRAMES

Time 
evolutionary 
image frames

Time evolutionary data
(Training data)

B0

B0

Original frames (or decompressed image frames)

Predicted frames

Delta frames

Compressed
frames

B1 B2 Bn

D1 D2 Dn

P1 P2 Pn

C1 C2 Cn

2
3 3 3

Trained model

4 4 45 6 6 6

7
8 8 8

9

1

: Model training

: Compression workflow

: Decompression workflow

Fig. 1. Workflows of TEZIP (de)compression

We explain how to compress time evolutionary image
frames with high ratio in this section and elaborate how to
improve compression speed in Section IV.

More precisely, PredNet is a self-supervised neural network such that the
loss function of the (i + 1)th predicted frame from the ith frame uses the
actual (i+ 1)th frame as its supervisory image frame.
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Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All
other lossless compressors have been configured with default
settings. Figure 8 shows that TEZIP outperforms these lossless
compressors in terms of compression ratio for all our datasets.
TEZIP achieves an improvement up to 3.2⇥ in terms of
compression ratio for these datasets. On average (shown as
arithmetic mean or AMEAN in Figure 8), lossless TEZIP
delivers 2.1⇥ better compression ratio compared to the second
best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the
entropy between consecutive frames. Varying entropy levels
lead to fluctuating compression ratios for Baseline, lower than
TEZIP on average. In contrast, TEZIP predicts frames with
high accuracy even when the entropy is high. For example,
multiple transforming objects in a frame lead to high entropy
and low compression ratios for Baseline. In TEZIP, our trained
PredNet can predict the next frames with higher accuracy,
resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.
From our evaluation, x265 (lossless) and FFV1 performs
better than other lossless compressors in terms of compression
ratio. Thus, we only show (de)compression times of x265
and FFV1 with TEZIP (Figure 9). TEZIP outperforms other
lossless compressors for four datasets with a large number
of frames(� 800) while it performs comparably for the other
four smaller datasets. Our experiments show that, in terms
of decompression time, TEZIP is generally better than x265
for most of the datasets, while FFV1 generally outperforms
TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,
while being comparable to FFV1.

Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-
ure TEZIP to handle different point-wise relative error bounds.
In our experiments we have varied the point-wise relative
error bound (↵) for different datasets based on the technique
described later in this section. We compare our lossy TEZIP
scheme with lossy compressors like SZ [13] and ZFP [26].
No comparisons are made to lossy video codecs (e.g. MPEG4,
X264) because they cannot be tuned with point-wise relative
error bounds and they are also not suitable for lossy floating-
point RGB value compression.

ZFP uses a block-based floating-point representation. In a
single block, all values are represented with respect to a single
common exponent. For a block with a wide range of values,
ZFP has no means to control the point-wise relative error
bound for each value. So we devise a method to compare
our point-wise relative error bounded TEZIP to other lossy
compressors with an equivalent amount of errors. This method
includes three steps: (1) We run ZFP with a certain absolute
error-bound. (2) Then, we measure the maximum of point-wise
errors for the decoded data; (3) Finally, we use the maximum
error as the error bound in TEZIP to evaluate its compression
ratio for each dataset.

With this method, we configure SZ and TEZIP with the
same maximum point-wise relative decompression errors as
ZFP, for a fair comparison among the three. Figure 10 shows
that, for different datasets, TEZIP achieves an improvement
up to 3.3x than the second best (SZ) in terms of compression
ratio. On average, TEZIP delivers an improvement of 1.7x
compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).
As mentioned earlier, ZFP does not have a point-wise relative
error feature which is the primary error control feature of
TEZIP. So we do not consider ZFP as a candidate for com-
paring (de)compression time. Our evaluation shows that SZ
performs better than other lossy compressors/codecs in terms
of compression ratio. Thus, we only show the (de)compression
times of SZ with TEZIP (Figure 11). Our evaluation shows
that lossy TEZIP has a compression time comparable to SZ.
But in case of decompression, SZ is much faster compared to
TEZIP. As a future study, we plan to parallelize the prediction

��

[1] Rupak Roy, Kento Sato, Subhadeep Bhattacharya, Xingang Fang, Yasumasa Joti, Takaki Hatsui, Toshiyuki Hiraki, Jian Guo and Weikuan Yu, 
“Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks”, In the proceedings of the 21 IEEE/ACM International 
Symposium on Cluster, Cloud and Internet Computing (CCGrid 2021), May, 2021 16



l Quantum computer can in principle treat an exponentially large amount of data, however, a major challenge in 
practice to represent classical data such as a classical image into a quantum circuit

l Inspired by a tensor network method, they have proposed a quantum-classical hybrid algorithm to construct an 
optimal quantum circuit for classical data that is represented as a quantum state by the amplitude encoding

l The proposed algorithm employs as an objective function the absolute value of fidelity 𝐹 = 0 '𝐶& Ψ , which is 
maximized iteratively to construct an optimal quantum circuit '𝐶 with controlled accuracy.

Automatic Quantum Circuit Encoding of a given Arbitrary Quantum State 
(Tomonori Shirakawa et al. [1])

[1] Tomonori Shirakawa, Hiroshi Ueda, Seiji Yunoki, “Automatic Quantum Circuit Encoding of a given Arbitrary Quantum State 
”, arXiv:2112.14524, Dec, 2021

Amplitude Encoding of classical data

They proposed a method to construct a quantum circuit
(composed of up to two-qubit gates) representing a given 

quantum state approximately with controlled accuracy.

Arbitrary
quantum
state

Application of this method
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FIG. 10. Quantum circuit encoding of a gray scale picture known as “Peppers” [64]. (a) Labeling of two-dimensional classical
data (with 8⇥ 8 pixels, as an example). (b) Original picture with 256⇥256 pixels. (c)-(e) Pictures reconstructed by decoding
the quantum circuit states Ĉ|0i on L = 16 qubits with the di↵erent number M of two-qubit unitary operators, M = 32, 112, and
520. (f) Original picture divided into 16 pieces (ms = 1, 2, . . . , 16 indicated by yellow in the picture) with 64⇥ 64 pixels each.
(g)-(i) Pictures reconstructed by decoding each quantum circuit state Ĉ(ms)|0i on L = 12 qubits with the di↵erent number M
of two-qubit unitary operators, M = 24, 42, and 450.
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FIG. 11. Fidelity per site between the quantum state | ci
(| (ms)

c i) on L = 16 (L = 12) qubits representing the orig-
inal picture in Fig. 10(b) [the msth segment of the origi-
nal picture in Fig. 10(f)] and the quantum circuit state Ĉ|0i
(Ĉ(ms)|0i) indicated by red triangles (green crosses). Here,
ms = 1, 2, . . . , 16 and thus 16 di↵erent results are shown for
the case where the picture is divided into 16 pieces.

in Fig. 11. The fidelity improves rather rapidly with in-
creasing M for M up to 50, but the improvement becomes
somewhat slower for M > 100.

For the better performance, next we simply divide
the original classical data xPep = {x0, x1, x2, ··· , x65535}
into 16 pieces, each representing a 64 ⇥ 64 pixels pic-
ture, as shown in Fig. 10(f). This implies that each
segment of the picture is given by a 212 dimensional

vector, i.e., x(ms)

Pep
= {x(ms)

0
, x

(ms)

1
, x

(ms)

2
, ··· , x(ms)

4095
} with

ms = 1, 2, . . . , 16. Accordingly, a quantum state | ̃ci for
the whole picture is given by a direct product of quan-

tum states | ̃(ms)
c i representing di↵erent segments of the

original picture, i.e.,

| ̃ci =
16O

ms=1

| (ms)
c

i, (62)

where

| (ms)
c

i =
2
12�1X

n=0

x̄
(ms)
n |n(ms)i (63)

with x̄
(ms)
n = x

(ms)
n /

q
V

(ms)
x and V

(ms)
x =

P
2
12�1

n=0
|x(ms)

n |2. Note that |n(ms)i in Eq. (63) is
the basis labelled by Eq. (1) within the msth segment.

Therefore, each | (ms)
c i is properly normalized within

the segment, i.e., h (ms)
c | (ms)

c i = 1. The quantum

state | (ms)
c i in Eq. (63) is now expressed with a smaller

number of qubits L = 12 and each | (ms)
c i is encoded

separately into a quantum circuit state Ĉ(ms)|0i using
the AQCE algorithm, which is expected to be easier
than the case for L = 16. We should however note that
the total Hilbert space defining | ̃ci in Eq. (62) is now
increased to 212⇥16 = 2192 from 216 for | ci to represent
the 216 dimensional classical data, suggesting that the
input classical data is mapped into a higher dimensional

Fig 2: Fidelity per site between the quantum state qubits 
representing the original picture in Fig. 1(b) [the msth s
egment of the original picture in Fig.1(f)] and the quantu
m circuit state indicated by red triangles (green crosses)
. 

Fig 1: Quantum circuit encoding of a gray scale. (a) Labeling of two-dimensional classical data (with 8 × 8 pixels, 
as an example). (b) Original picture with 256×256 pixels. (c)-(e) Pictures reconstructed by decoding the quantum 
circuit states. (f ) Original picture divided into 16 pieces. (g)-(i) Pictures reconstructed by decoding each quantum c
ircuit state
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l Comprehensive gene network analysis by XAI for uncovering molecular mechanism of disease (Heewon Park et 
al., 2020 [1])

l Although various approaches were developed to gene network analysis, comprehensive interpretation of the massive 
networks remains a challenge

l They conducted comprehensive analysis of the massive gene networks with the use of explainable artificial intelligence 
(XAI) approaches

- DeepTensor and Tensor Reconstruction-based Interpretable Prediction (TRIP), proposed by Maruhashi et al. 2018; 2020

l The use of the XAI enables us to overcome limitation of existing gene network analysis, i.e., narrow angle in the large-
scale gene network analysis, and this leads to a better understanding of molecular interplay involved to disease

l Machine learning by neural network for quantum many-body solver and experimental data analysis (Yusuke 
Nomura et al., 2021 [2])

l Quantum many-body problems are known to show NP hard difficulty

l We have developed a solver by using Boltzmann machines to approximate solutions accurately and efficiently

l It was applied to a challenging problem of a quantum spin model and established the existence of quantum spin liquid 
phase, which bears  a long-ranged quantum entanglement. On another application of machine learning, we have 
extracted electron self-energy, which is hidden in the photoemission experimental data. It has established the existence 
of prominent resonance peaks which are responsible for the high-temperature superconductivity.

Other AI researches by Priority Application Projects
(Fugaku is not used)

[7] Park, Heewon Maruhashi, Koji, Yamaguchi, Rui, Imoto, Seiya, Miyano, Satoru, “Global gene network exploration based on explainable artifi
cial intelligence approach”, Nov., 2020
[8] Nomura, Yusuke and Imada, Masatoshi, “Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Net
work Wave Function, Correlation Ratio, and Level Spectroscopy”, American Physical Society, 10.1103/PhysRevX.11.031034, Nov., 2021 

Priority Application
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l Facilitating ab initio configurational sampling of multicomponent solids using an on-lattice neural network model and active learning 
(Kasamatsu et al., 2020 [1])

l Kasamatsu et al. proposed a scheme for ab initio configurational sampling in multicomponent crystalline solids using Behler-Parinello type 
neural network potentials (NNPs) 

l The NNPs are trained to predict the energies of relaxed structures from the perfect lattice with configurational disorder instead of the usual 
way of training to predict energies as functions of continuous atom coordinates.

l Training set bias is avoided through an active learning scheme

l This enables bypassing of the structural relaxation procedure which is necessary when applying conventional NNP approaches to the lattice 
configuration problem

l This idea is demonstrated on the calculation of the temperature dependence of the degree of A/B site inversion in MgAl2O4, which is a 
multivalent system requiring careful handling of long-range interactions

l The present scheme may serve as an alternative to cluster expansion for ʻdifficultʼ systems, e.g., complex bulk or interface systems with 
many components and sublattices that are relevant to many technological applications today

l Density functional theory from supervised learning (Ryo Nagai et al. 2021 [2]) 

l Density functional theory (DFT) is the standard electronic structure theory and is widely used as a basis for materials design

l DFT is based on the Hohenberg-Kohn theorem that there is a one-to-one correspondence between particle density and energy, a 
relationship that should be machine learnable, but the lack of this relationship makes the accuracy limited

l They recently proposed a method to establish this relationship using neural network methods

l They found that the DFT developed in this study can improve the accuracy not only for molecular systems, for which the training set can be 
obtained by a very accurate quantum chemical method, but also for solids, for which the training set is unavailable but theoretically derived 
physical conditions work alternatively

l This paves a systematic way for further accuracy and will serve as a tool for developing the ultimate material database

Other AI researches by Priority Application Projects
(Fugaku is not used)

[1] Kasamatsu, Shusuke and Motoyama, Yuichi and Yoshimi, Kazuyoshi and Matsumoto, Ushio and Kuwabara, Akihide and Ogawa, Takafumi, “Facil
itating {¥it ab initio} configurational sampling of multicomponent solids using an on-lattice neural network model and active learning, 10.48550/ARXI
V.2008.02572”
[2] Nagai, Ryo and Akashi, Ryosuke and Sugino, Osamu, “Machine-Learning-Based Exchange-Correlation Functional with Physical Asymptotic Const
raints”, 10.48550/ARXIV.2111.15593

Priority Application



Highlight of Efforts in Bridging AI <-> HPC
in R-CCS (Fugaku)

by R-CCS High Performance Artificial Intelligence Systems Research Team
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R-CCS HPAIS Team
Ø PI: Mohamed Wahib

Ø Senior Research Scientists: Jun Igarashi

Ø Research Scientists: Aleksandr Drozd, Emil Vatai

Ø Visiting Scientists: Rio Yokota (TokyoTech), Balazs Gerofi (Intel)

Ø Interns: Soyturk (Koc U., Turkey), Zhang (Hokkaido U), Pucceti (SNS)
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Overview of previous research: perspective of 
AI+HPC computing stack

Bottlenecks in Scaling AI
Unlike traditional HPC applications, AI workloads have multiple bottlenecks

Throughput

Latency

Memory capacity

Memory BW

Network

Compute

I/O

HPC à AI
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ParDNN: An Oracle for Characterizing and Guiding 
Large-Scale Training of Deep Neural Networks

HPC à AI

23

ØDifferent forms of model parallelism are emerging
ØWe provide a model-driven analysis and a utility to 

help in detecting the limitations and bottlenecks of 
different parallelism approaches at scale 

Overview of 
ParDNN

ACM HPDC’21 A. Kahira, T. Nguyen,, L. Gomez, Ryousei Takano, R. Badia, M. Wahib: ParDNN: An Oracle for
Characterizing and Guiding Large-Scale Training of Deep Neural Networks, ACM Proceedings of the
International Symposium on High-Performance Parallel and Distributed Computing 2021 (ACM HPDC’21)

(a) Sequential implementation on a single PE

(b) Data parallelism

(c) Spatial parallelism splits the input G and output ~ on either width (as
shown in this �gure), height or both dimensions

(d) Layer parallelism (partition the model vertically with pipeline implemen-
tations)

(e) Filter parallelism (partition the model horizontally)

(f) Channel parallelism (partition the model horizontally)

(g) Hybrid parallelism (example of �lter on top of data parallelism)

Figure 1: Di�erent strategies for distributed training of CNNs. Red
solid lines refer to communication

other PEs. Note that, the spatial dimension � ,, (and ⇡ as in 3-
D convolution layer), of G , ~, 3!3G and 3!

3~ are split among ? PEs
(Figure 1(c)). That is ? = ?F ⇥ ?⌘ ⇥ ?3 where ?F , ?⌘, ?3  , ,
� , ⇡ , respectively. Each process thus performs the forward and
backward operation locally. For a convolution layer, when a �lter
of size  ⇥  where  > 1 is placed near the border of a partition,
each PE requires remote data for computing. Thus, a small number
(e.g.,  2 ) of rows and/or columns will be transferred from logically-
neighboring remote PEs (halo exchange) [16]. The exchanged data
size (i.e., halo(G; )) depends on how each spatial dimension is split,
and the stride length. For example, a processing element 8 needs a
halo exchange for its partial input (G)8 to get (G)8+ when computing
the output (~)8 in the forward phase. In the backward phase, the
computation of ( 3!3G )8 requires a halo exchange on the correspond-
ing (

3!
3~ )8 . To compute the weight gradients requires the (G)8+, yet

no more halo exchange is required since the exchanged values of
(G)8 can be reused. In the weight update phase an Allreduce is
performed for the sum of 3!3F .
(IO) G [⇤, ⇤, ⇤]  �$ (dataset,⌫)
(IO) (G)8 [⇤, ⇤,? ]

(20CC4A
 ������� G [⇤, ⇤, ⇤] in the �rst layer.

(FB) (G)8+ [⇤, ⇤,? ]
⌘0;>
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(FB) (
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(FB) (
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3F )8 [⇤, ⇤, ⇤]  ⌫,F486⌘C ( (
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�
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3.3 Model-horizontal parallelism
A model parallel variant in which each layer of the neural network
model is equally divided by the number of output (�lters � ) or input
channels (channels ⇠) and distributed on ? PEs. Each PE keeps a
portion of the weights of a given layer and partially computes the
output in both the forward and backward phases. For example,
the �lter parallelism of a convolution layer [18] is illustrated in
Figure 1(e). Each PE 8 keeps �? �lters and computes �? corresponding
channels of the output activation. That is, | (~)8 | = # ⇥ |. | ⇥ �

? .
After �nishing the forward computation of each layer, the PEs have
to share their local output, i.e., ~ =

–?
8=1 (~)8 (via an Allgather

operation). After �nishing the backward computation of each layer,
the processes also have to share their gradient of the input (pass it to
the preceding layer), i.e., 3!3G =

Õ?
8=1 (

3!
3G )8 (an Allreduce operation

2).
Because each PE performs the weight-update on its portion of
weights, the gradient-exchange phase is skipped.

(IO) G [⇤, ⇤, ⇤]  �$ (dataset,⌫)
(IO) (G)8 [⇤, ⇤, ⇤]

⌫20BC
 ����� G [⇤, ⇤, ⇤] in the �rst layer.
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�3!
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�
2In the backward phase, because a given layer ; �1 only requires to use one partition of
the layer ; ’s input gradients, i.e.,3!3G [⇤,?, ⇤], it is possible to perform a Reduce-Scatter
instead of an Allreduce operation [17].
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GTOPX Space Mission Benchmarks
HPC à AI

24

ØLandscape Analysis for ML
ØImportant to understand importance of 

parameters
ØSpace mission benchmarks

Elsevier SoftwareX M. Schlueter, M. Neshat, M. Wahib, M. Munetomo, M.
Wagner: GTOPX Space Mission Benchmarks Elsevier SoftwareX Volume 14,
June 2021

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6: parallel coordinate plots of the GTOPX space mission benchmarks using a

local search based on the best-found solutions. (a) Cassini2, (b) Messenger (reduced), (c)

Messenger (full), (d) Rosetta, e) Cassini1-MINLP (feasible solutions), (f) Sagas (feasible

solutions), (g) GTOC1 (feasible solutions), (h) Cassini1 (feasible solutions).
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(c)

Figure 5: Landscape analysis of GTOPX benchmarks using grid search. (a) Messenger

(full), (b) Rosetta, (c) Messenger (reduced)
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Scaling Distributed Deep Learning Workloads beyond 
the Memory Capacity with KARMA

HPC à AI

25

ØConcurrency-driven out-of-Core 
ØCapacity-based interleaved with recompute

Ø1.52x over state-of-the-art (single GPU)
ØFirst out-of-core to support multi-GPU
ØHeterogeneity and careful orchestration

ØOutperforming DP+MD with out-of-core
ØExperiments with up to 2,048 GPUs
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ACM/IEEE SC’20 Mohamed Wahib, Haoyu Zhang, Truong Thao Nguyen, Aleksandr Drozd, Jens Domke, Lingqi
Zhang, Ryousei Takano, Satoshi Matsuoka, Scaling Distributed Deep Learning Workloads beyond the Memory
Capacity with KARMA, ACM/IEEE Proceedings of Supercomputing 2020 (ACM/IEEE SC’20)



Optimizing Network Architecture for Deep Learning 
HPC à AI

26

Problem: Number of involved GPUs (P) 
becomes too big, 1000s GPUs. 
Ø Ring-based algorithm O(P)𝛼 : latency factor 

increase. 
Ø Halving-Doubleling algorithms O(logP)𝛼 : 

network congestion of communication.

Proposal: Distributed Loop Network topology

Pipelined Halving – Doubling Algorithm

CCGRID’21 Truong Thao Nguyen, Mohamed Wahib: An Allreduce Algorithm and Network Co-design for Large-Scale
Training of Distributed Deep Learning, In proceedings of the IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing 2021



AI for Scientific Codes
Use AI for code auto generation to aid scientific programmers 
in producing HPC programs.

Compiler Technologies

Auto-tuning
No code auto-generat ionScalable explorat ion; general

High-level context

Scalable explorat ion; general

Code auto-generat ion

Ø Compiler tech. 
Ø High-level trans.
Ø Auto-tuning

This Proposal

+ Machine Learning

Elast ic t ime budget

High-level context lost

Code auto-generat ion

Constrained t ime budget

High-level Code-Transformation

Not scalable

High-level context

Problem-specif ic

General and expandable approach
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AI à HPC



Thank you.

Fugaku is driving innovation in bridging HPC <-> AI, and will 
continue to do!


